

Association of BLK and BANK1 gene polymorphisms with systemic lupus erythematous in Egyptian patients

Rehab A. Mohammed^{1,6}, Sara M. Elhadad¹, Amany M. Tawfeik^{2,5}, Omnia A. El-dydamoni², Asmaa A. Attia¹, Nora Seliem³, Iman A. Kassem^{4,7} and Haneya A. A. Anani^{2,5}

The Egyptian Journal of Immunology, E-ISSN (2090-2506)

Volume 31 (4), October, 2024 Pages: 36–45.

www.Ejimmunology.org

https://doi.org/10.55133/eji.310404

¹Department of Internal Medicine, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.

²Department of Medical Microbiology & Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.

³Department of Medical Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
⁴Department of Clinical Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.

⁵Department of Microbiology, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt.

⁶Department of Internal Medicine, Ibn Sina National College, Jeddah, KSA.

⁷Department of Clinical Pathology, Dr Erfan and Bagedo General Hospital, Jeddah, KSA.

Corresponding author: Rehab A. Mohammed, Department of Internal Medicine, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt. Email: dr.rehabomran@yahoo.com.

Abstract

This study examined the genotype, allelic frequencies (polymorphisms) in a sample of Egyptian patients and examined the relationship between disease activity in systemic lupus erythematosus (SLE) and the B lymphoid tyrosine kinase (BLK) and B-cell scaffold protein with ankyrin repeats 1 (BANK1) gene. This case control study involved 70 SLE patients and 40 subjects matched for age and sex as a control group. Clinical data were gathered from each participant, including SLE-related clinical activity indicators. Utilizing the restriction fragment length polymorphism (RFLP)-polymerase chain reaction (PCR), the single nucleotide polymorphisms (SNPs) BLK rs13277113G/A and BANK1 rs10516487G/A were assessed. The most prevalent genotype among the study participants was BLK rs13277113; G/G (57.1%), and BANK rs10516487; GG/ genotype (74.3%). There were no substantial variations in the incidence of genotype and allelic polymorphism between patients and controls (p>0.05). In the studied SLE patients, however, there was no significant association between both alleles (BANK rs10516487 gene alleles, G/G and G/A & BLK rs13277113, G/A, G/G &A/A) and the SLE disease activity score. While there was a significant association between BLK rs13277113 genotype alleles and age. In conclusion, BLK rs13277113 G/A and BANK1 rs10516487 G/A alleles showed no difference between SLE Egyptian patients compared to controls with no link between both genes and SLE disease activity.

Keywords: Single nucleotide polymorphisms, BLK, BANK1, Systemic lupus erythematous, RFLP-PCR.

Date received: 23 December 2023; accepted: 08 August 2024

Introduction

Systemic lupus erythematous (SLE) is an autoimmune illness characterized by

heterogeneous systemic manifestations, formation of autoantibodies, involvement of environmental and complex genetic

components with no clear mendelian pattern of inheritance.¹

The discovery of numerous genetic risk factors for SLE which are essential to the immune system's operation has increased our knowledge about disease's etiology. The recently discovered SLE-associated loci have shed light on the underlying genetic alterations.² Furthermore, we have been able to delve into the immune system pathways affected by these genes and pinpoint the symptoms triggered by these loci.²

SLE-associated variants affect signaling and regulatory pathways involved in many processes including apoptosis, DNA degradation and removal of immune complexes containing nuclear antigens. Additionally, SLE risk variants may have an impact on activation of pathways including type I interferon, Toll-like receptor activation, and nuclear factor kappa kB.³ The majority of SLE susceptibility loci are common variations that have been verified across many ancestries, indicating shared pathways in disease causation.³

New susceptibility genes for SLE were identified including B Cell Scaffold Protein with Ankyrin Repeats 1 (BANK1). BANK1 encodes a scaffold protein which is unique for B cells development and activation. Its expression stimulates B cell receptor-induced calcium mobilization from intracellular calcium reserves. BANK1 polymorphisms may be involved in dysregulation of the B cell receptor, which is a common feature found in SLE patients. 5

B-cell receptor signaling, and development are also regulated by the Src family of nonreceptor tyrosine kinase, which is encoded by the B-lymphoid tyrosine kinase (BLK) gene. The disease related BLK haplotype is associated with significant low expression of BLK transcript in B lymphoblastoid cell lines, suggesting that lower production of BLK in human B cells confers risk for autoimmunity.⁵

It has been shown that BLK interacts with BANK1, an adaptor/scaffold protein that is mainly produced in B cells like other protein tyrosine kinases in the Src kinase family, as a result, these proteins have a significant impact on gene expression, protein function, and B-cell

signaling and activation.⁶ Although different BLK and BANK1 single-nucleotide variants have been examined in patients with SLE, the results are uncertain because a report showed an association with this disease,⁷ while another report found no such associations.⁸ However, the association of these gens and SLE has been scarcely evaluated in the Egyptian population. Thus, we aimed to investigate whether BANK1 and BLK polymorphisms could be replicated in SLE Egyptian patients and whether there is any relationship between these polymorphisms and disease activity.

Subjects and Methods

This was a case control study which involved 70 SLE patients fulfilling the SLE International Collaborating Clinics (SLICC) 2012 standards for SLE classification. The participants were recruited from the outpatient rheumatology clinic of the Department of Internal Medicine at Al-Zahraa University Hospital during the period from December 2022 to May 2023. In addition, 40 subjects, matched for age and sex were included as a control group,

Detailed history and clinical examination were done for each patient, and the Systemic Lupus Erythematosus Disease Activity Index (SLEDI) score was used to determine the SLE disease activity, SLEDI > 6 points were defined as active disease. 10 Patients with other autoimmune diseases such as rheumatoid arthritis, Behcet's disease, myasthenia gravis, bronchial asthma, or Type I diabetes, chronic liver disease, malignancy, or those receiving biologic therapy were excluded from this study.

A venous blood sample (approximately 10 ml) was collected from each patient and control. Blood was aliquoted into ethylene diamine tetra-acetic acid (EDTA) tubes. A blood portion was used for assessment of erythrocyte sedimentation rate (ESR) mm/hr, using the Westergren method. Another blood portion was stored at -20°C for further DNA extraction. A final blood aliquot was used to separate sera. Creactive protein (CRP) was determined by a turbidimetric assay kits (Lot Number 19420, Biosystems kit, Medical Expo, Spain), according to the manufacturer's instructions.

Laboratory measurements were performed for all participants. Serum urea and creatinine were determined by commercial kits (Biosystems S.A), Spain), according to the manufacturer's instructions. Serum albumin by commercial kits (Cat No. ALB103, Randox, United States), according to the manufacturer's instructions. Autoimmune markers (Anti-nuclear antibodies (ANA), the anti-double stranded DNA (anti-dsDNA) by commercial kits (Cat No. 2500 ANA HEp-2, Bio RAD, USA), according to the manufacturer's instructions. Complement (C3 and C4) by commercial kits (Thermo Fisher Scientific, USA), according to the manufacturer's instructions.

Assessment of BANK1 and BLK polymorphisms: DNA from the blood samples of patients and controls was extracted using commercial kits (Lot Number 00459333, Gene Jet whole blood Genomic DNA purification Mini Kit #K0781, Thermo Scientific Co. Ltd.'s, USA), according to the manufacturer's instructions. The concentration of the extracted DNA was determined by spectrophotometry using a photometer (Nano Drop spectrophotometer, Thermo Fisher, USA) and then stored at -70°C till used.

The TaqMan® single nucleotide polymorphisms (SNP) genotyping assay

To perform the PCR amplifications, we prepared a 5 μ L reaction mixture using 2.5 μ L of TaqMan Master Mix (Thermo Scientific), 0.0625 μ L of a 40X probe, 2.435 μ L of DNase-free water, and 50 ng of DNA, and 10 picomole of each primer. Following the manufacturer's protocol, two sets of primers (BLK and BANK1) were constructed using the Thermo Fisher's TaqMan® SNP genotyping assay, the primer sequences are reported in Table (1). Amplifications were carried out in a programmable thermal cycler (Biometra, Germany) using the following conditions: an initial denaturation step at 95°C, followed by 45 cycles, each of a denaturation at

95°C for 15 seconds, and annealing/extension at 60°C for 1 minute. Genotyping was performed with Step One™ and Step One Plus™ Real-Time PCR System Software version 2.3 (USA).

For Restriction Fragment Length Polymorphism (PCR-RFLP), PCR-RFLP, two restriction enzymes (Fast Digest BLK (rs13277113) and BANK1 (rs10516487), Thermo Scientific, USA) were used to digest the PCR products. Each enzyme was produced in two separate tubes. Tubes containing BLK and BANK1 restriction endonucleases incubated at 37°C for 2 hours, with a negative control consisting of all reagents except the restriction enzyme. The reaction volume was 30 μ L, consisting of 10 μ L PCR products, 1 μ L restriction enzyme, 5 μL buffer, and 14 μL sterile water. The digested products were then electrophoresed on a 2% agarose gel containing ethidium bromide and visualized using UV light.

Statistical Analysis

The Statistical Package of Social Science (SPSS) application for Windows (version 21) was utilized to analyze the data. The normality of the data was originally checked utilizing the Kolmogorov-Smirnov test. The terms used to describe qualitative data were number and percentage. When the projected cell count was less than 5, the Fischer exact test (FET) and the Monte Carlo test were utilized. The Chi-square test was utilized to explore relationships between categorical variables. Continuous variables with appropriately distributed data were given as mean± standard deviation (±SD), and non-normal data as median (min-max). The two study groups were compared utilizing the student t test for regular data and the Mann Whitney test for non-normal data. ANOVA (parametric test) and Kruskil-Wallis (nonparametric) tests were utilized to compare more than two groups. A p value <0.05 was considered significant.

Table 1. Primer sequence of BLK and BANK1.

Gene	Primer sequence	Cat.no.
BLK	AAGATTAAACACTTATCAGATCATT <u>[G/A]</u> TCTGCTTTTGGTTTTTCTAGTACCC	4351379
BANK1	AAAAGGGAAGCCATCCTGTTATATC[G/A] CTTGGAGAATTTCTCTTTTCGGCA	4351379

Results

The descriptive data for patients and control groups are summarized in Table 2. The median age of the SLE patients and controls were 35.40±7.09 and 31.95±6.16 years, respectively. The patients group included 63 (91%) female and 7 (9%) males, while the control group included 2 (5.0%) males and 38 (95.0%) females.

The median duration of the disease was 6 years. Among the SLE patients, 64.1% had active disease, while 35.9% had inactive disease, with a mean SLEDI score of 6, ranging from 1 to 18.

The frequency of predominant clinical manifestations in the SLE patients were arthritis (82.9%), fever (68.6%), lupus nephritis (42.9%), and rash (37%) (Table 2).

Table 2. Description of demographic and clinical manifestations data of the studied groups.

	SLE patients	Control
	No.=70	No.=40
Age (years, mean±SD)	35.40±7.09	31.95±6.16
Sex No. (%)		
Female	63 (91%)	38 (95.0%)
Male	7 (9%)	2 (5.0%)
Disease Duration (years)		
Median (Min-Max)	6 (1-16)	-
Disease activity No. (%)		
Active	45 (64.1%)	-
Inactive	25 (35.9%)	-
SLEDI	C (4.40)	
Median (Min-Max)	6 (1-18)	- -
Clinical manifestation No. (%)		
Lupus nephritis	29 (42.9%)	
Arthritis	57 (82.9%)	
Vasculitis	4 (5.7%)	
Cerebritis	2 (2.9%)	
Fever	47 (68.6%)	
Pleurisy	19 (28.6%)	
Leucopenia	10 (14.3%)	
Rash	26 (37.1%)	
Psychosis	4 (5.7%)	
Thrombocytopenia	10 (14.3%)	
Pericardial effusion	4 (5.7%)	
Alopecia	29 (42.9%)	
Seizures	6 (8.6%)	

The genotypic distribution of BANK rs10516487 and BLK rs13277113 SNPs in the SLE patients and control group were examined in this study. The most common genotype (codominant) BANK rs10516487 in the studied Egyptian SLE patients was G/G (74.3%) followed by G/A (25%). The dominant genotype for BLK

rs13277113 in the SLE studied group was (G/G and G/A) (94.2%).

The genotypic and allelic frequencies of BLK rs13277113 were higher in SLE patients compared to the control group. The most frequent allele was G/G (57.1%) followed by G/A (37 %) and A/A alleles (5.7%) (Table 3). In

contrast, in the control group the allele frequencies were 55%, 45%, and 0% for G/G, G/A, and A/A, respectively. For BANK rs10516487, the G/G allele was less frequent in SLE patients (74.3%) compared to controls (80%), while the G/A allele was more frequent

in SLE patients (25%) compared to controls (20%) as shown in Table 3.The most common genotype in the investigated patients were BLK rs13277113; G/G (57.1%) and BANK rs10516487; G/G (74.3%) (Figure 1 and 2).

Table 3. BANK rs10516487 and BLK rs13277113 genotype among systemic lupus erythematosus (SLE) and control groups.

	SLE group No.=70	Control group No.=40	p value
BANK rs10516487			
G/A	18 (25%)	8 (20%)	*NS
G/G	52 (74.3%)	32 (80%)	
BLK rs13277113			
G/A	26 (37.1%)	18 (45%)	**NS
G/G	40 (57.1%)	22 (55%)	. 112
A/A	4 (5.7%)	0 (0%)	

^{*} χ^2 : Chi square test, **MC: Monte Carlo test. p > 0.05 is not significant (NS).

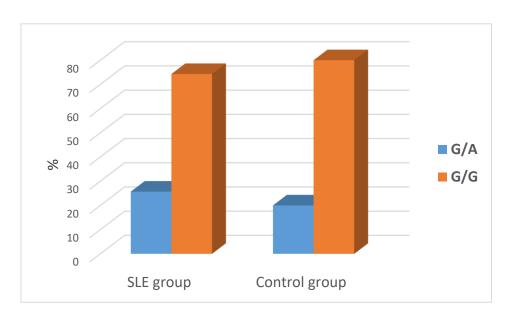


Figure 1. BANK rs10516487 genotype among systemic lupus erythematosus (SLE) and control groups.

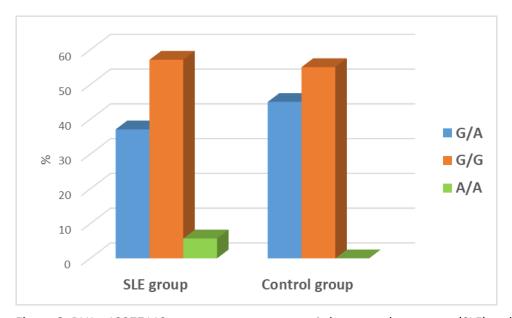


Figure 2. BLK rs13277113 genotype among systemic lupus erythematosus (SLE) and control groups.

Both BANK rs10516487 gene alleles, G/G and G/A which were found in the studied SLE patients showed no difference between both alleles and disease activity score (p=0.590), (Table 4 and Figure 1). The G/G allele was more frequent in both active and inactive groups (p=0.911). Many of the clinical findings in SLE patients' group including lupus nephritis, arthritis, fever, rash, and pleurisy were associated with G/G allele of BANK rs10516487, Table 4.

The A/A allele of BLK rs13277113 was more prevalent in younger SLE patients (p=0.005), while both G/A and G/G were detected in female patients (p=0.624) and in patients with long disease duration (p=0.136). The G/A and G/G alleles were present in both active and inactive patients without significant difference in disease activity score (SLEDI) (p=0.646). The G/G allele was more frequently detected than the other two alleles (G/A, and A/A) with the most presented clinical findings (Table 5).

Table 4. Association between BANK rs10516487 genotype and systemic lupus erythematosus (SLE) clinical findings.

	BANK rs10516487		<i>p</i> value	
	G/A	G/G	ρ value	
Age (years) Mean ± SD	31.55±6.69	36.73±6.85	^t NS	
Sex				
Males	4 (22.2 %)	2 (3.8%)	^{FET} NS	
Females	14 (77.8%)	50 (96.2%)		
Duration of disease	4 (2-15)	6 (1-16)	^z NS	
SELDI	5 (0.00-18)	6 (0.00-18)	^z NS	
Activity				
Active	5 (55.6%)	15 (57.7%)	^{χ2} NS	
Inactive	4 (44.4%)	11 (42.3%)	IA2	

Table 4. Continued.

	BANK rs10516487		p value
_	G/A	G/G	p value
Clinical manifestations			
Lupus nephritis	3 (33.3%)	12 (46.2%)	^{χ2} NS
Arthritis	7 (77.8%)	22 (84.6%)	FET NS
Vasculitis	1 (11.1%)	1 (3.8%)	^{FET} NS
Cerebritis	0 (0 %)	1 (3.8%)	^{FET} NS
Fever	6 (66.7%)	18 (69.2%)	^{χ2} NS
Pleurisy	0 (0%)	10 (38.5%)	^{χ2} 0.028
Leucopenia	2 (22.2%)	3 (11.5%)	FET NS
Rash	4 (44.4%)	9 (34.6%)	^{χ2} NS
Psychosis	1 (11.1%)	1 (3.8%)	^{FET} NS
Thrombocytopenia	1 (11.1%)	4 (15.4%)	^{FET} NS
Pericardial effusion	1 (11.1%)	1 (3.8%)	^{FET} NS
Alopecia	4 (44.4%)	11 (42.3%)	^{χ2} NS
Seizures	1 (11.1%)	2 (7.7%)	^{FET} NS

Frequency of BLK rs13277113 genotype alleles (G/A, G/G, A/A), p > 0.05 is not significant (NS). χ 2: Chi square test, Fisher's Exact Test (FET). Z: Z test.

Table 5. Association between BLK rs13277113 genotype and systemic lupus erythematosus (SLE) patient's characteristics.

	BLK rs13277113		<i>p</i> value	
	G/A	G/G	A/A	p value
Age (years) Mean ± SD	32.15±6.20	38.40±6.21	26.50±6.36	^F 0.005
Sex				
Male	2 (15.4%)	1 (5.0%)	0 (0%)	^{MC} NS
Female	11 (84.6%)	19 (95.0%)	2 (100%)	
Duration of disease	5 (2- 11)	7 (1- 16)	4.5 (4-5)	^{KW} NS
SELDI	6 (0.0- 18)	5.5 (0.0- 18)	4 (0.0-8)	^{KW} NS
Activity				
Active	7(53.8%)	12(60.0%)	1(50.0%)	^{MC} NS
Inactive	6(46.2%)	8(40.0%)	1(50.0%)	
Clinical manifestations				
Lupus nephritis	4(30.8%)	10(50.0%)	1 (50.0%)	^{MC} NS
Arthritis	11(84.6%)	16(80.0%)	2 (100 %)	^{MC} NS
Vasculitis	1(7.7%)	1(5.0%)	0 (0%)	^{MC} NS
Cerebritis	0(0 %)	1(5.0%)	0 (0 %)	^{MC} NS
Fever	10(76.9%)	13(65.0%)	1 (50.0%)	^{MC} NS
Pleurisy	3(23.1%)	6(30.0%)	1 (50.0%)	^{MC} NS
Leucopenia	2(15.4%)	3(15.0%)	0(0 %)	^{MC} NS
Rash	2(15.4%)	10(50.0%)	1(50.0%)	^{MC} NS
Psychosis	0 (0%)	2 (10.0%)	0 (0%)	^{MC} NS
Thrombocytopenia	4(30.8%)	1(5.0%)	0 (0 %)	^{MC} NS
Pericardial effusion	1(7.7%)	1(5.0%)	0 (0%)	^{MC} NS
Alopecia	6(46.2%)	8(40.0%)	1 (50.0%)	^{MC} NS
Seizures	1(7.7%)	2(10.0%)	0 (0%)	^{MC} NS

p > 0.05 is not significant (NS). MC: Monte Carlo test. KW:-Kruskil-Wallis test, F: Fischer exact test.

Discussion

In the present study we investigated whether BANK1 and BLK polymorphisms could be replicated in SLE Egyptian patients and to determine any relationship between these polymorphisms and disease activity. In our study, single nucleotide polymorphisms (SNPs) in BANK1 and BLK were shown to be associated with SLE in Egyptian patients, this association between these variant genes and SLE was observed in other population studies as well. 11,12 In the present study, the predominant genotype (codominant) for BANK rs10516487 was G/G (74.3%) followed by G/A (25%). These findings were consistent with a previous research study.¹³ However, we did not find a relation between the GG haplotype containing the two alleles and susceptibility to SLE. Nevertheless, we found that the AA haplotype containing the BANK1 rs10516487A decreases the risk for SLE. We found a link between SLE susceptibility and the GA haplotype bearing the rs10516487G major allele. It has been hypothesized that rs10516487 could potentially alter the affinity of BANK1 for inositol 1,4,5trisphosphate receptor, altering B cell signaling and thus increasing the susceptibility to SLE.¹⁴

Both alleles of the BANK1 rs10516487 gene, G/G and G/A, showed no significant differences with respect to age and gender within the SLE patient group (p=0.058, p=0.090 respectively). In addition, there was no difference detected between both alleles and the disease activity score in our study, this may indicate that these two variants may confer risk for SLE per se with no impact on disease activity or severity. The G/G allele was more frequent in both active and inactive SLE patients than G/A allele. The current study found a relation between BLK and BANK1 SNPs with many clinical characteristics of SLE. Hence, there might be a link between the BLK rs2736340T/C-rs13277113A/G and BANK1 rs10516487G/A-rs3733197G/A polymorphisms and disease severity.5 Upregulated mRNA expression of BANK1 was detected in renal from lupus nephritis suggesting a role for B cells in SLE pathogenesis and its related clinical manifestations. 15

The BLK rs13277113A/G genotypic and allelic frequencies were associated with susceptibility to SLE disease in a study from China, specifically involving patients from Hong Kong, and Thailand. 16 However, our study as well as a study involved a Mexican cohort did not validate this link.¹⁷ Such variation in the results may be related to the difference in sample size and ethnicities, some of the disease susceptibility loci operate in some ethnic groups, but not all.16

In the present study, the most frequent allele in SLE patients was G/G (57.1%) followed by G/A (37 %) and A/A alleles (5.7%), compared to control group (55% and 45% and 0 %, respectively). In contrast to our results, a study by Pamuk, et al., 2017, showed that the relative expression of the BLK gene was considerably lower in the SLE group (0.52 times, 95% CI: 0.19-0.85) compared to controls. When compared to controls, SLE patients were more likely to have the heterozygous genotypic pattern (GA) for the rs13277113 polymorphism (48.8 vs. 31.4%, for control, p= 0.035). The discrepancy between those earlier results and ours may be explained by different geographical regions.

One of the strengths of this study is the presence of clinical data of the patients to correlate with the BLK and BANK1 variants. However, the limitations are the small sample size, and it was a single-center study performed with no external funding. In conclusion, based on our study findings, there is insufficient evidence to establish a link between the BLK rs13277113 and BANK1 rs10516487 variations and SLE.

Author Contributions

HAAA, RAM, AMT; Conceptualization. AMT, OAE, HAAA, NS; Methodology. AAA; Software. AAA; Validation. NS; Investigation. SE, OAE; Data Collection. HAAA, RAM, AAA; Writing. HAAA. RAM; Original Draft Preparation. RAM. and HAAA; Writing, Reviewing & Editing. HAAA; Supervision. SME; Project Administration. All authors; Funding Acquisition.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) denies receipt of any financial support for the research, authorship, and/or publication of this article.

Ethical approval

The protocol of the study was reviewed and approved by the Research Ethics Committee, Faculty of Medicine for Girls, Al-Azhar University, (approval dated 8 September 2021, study ID: 979).).

Informed consent

Each patient and control subject provided a written informed consent before being included in the study.

References

- Roba MT, Sara FM, Iman HB et al. (2015). Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine. 72[2]:146–153.
- 2. Rullo OJ and Tsao BP. (2013). Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis;72: 2: ii56-61.
- 3. Zhou XJ, Lu XL, Nath SK, et al. (2012). Gene-gene interaction of BLK, TNFSF4, TRAF1, TNFAIP3, and REL in systemic lupus erythematosus. *Arthritis Rheum.*; 64:222-31.
- 4. Castillejo-Lopez C, Delgado-Vega AM, Wojcik J, et al. (2012). Genetic and physical interaction of the B-cell systemic lupus erythematosus- associated genes BANK1 and BLK. *Ann Rheum Dis.*; 71:136–42
- Dam EM, Habib T, Chen J, A, et al. (2016). The BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling and development in humans. *Clin Immunol*. Dec; 173:171-180. doi: 10.1016/j.clim.2016.10.018. Epub 2016 Nov 2. PMID: 27816669; *PMCID*: PMC514864
- 6. Bernal-Quirós M, Wu YY, Alarcón-Riquelme ME, et al. (2013). BANK1 and BLK act through phospholipase C gamma 2 in B-cell signaling. *PLoS One.* 2013;8(3): e59842. doi: 10.1371/journal.pone.0059842. Epub Mar 26. PMID: 23555801; PMCID: PMC3608554.

7. Kozyrev SV, Abelson AK, Wojcik J, et al. (2008). Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. *Nat Genet* 40: 211–216.

- Kozyrev S.V, Bernal-Quiros M, Alarcon-Riquelme M.E, et al. (2012). The dual effect of the lupusassociated polymorphism rs10516487 on BANK1 gene expression and protein localization. *Genes Immun*. 2012; 13, 129–138
- Michele petri, Ana-Maria Orabi, Graciela Alarcon et al. (2012). Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis & Rheumatology. 64(8):2677-86.
- 10. Lam GKV, Petri M. (2005). Assessment of systemic lupus erythematosus. *Clin Exp Rheumatol.* 23: S120–32.
- 11. Y K Chang, W Yang, M Zhao, et al. (2009). Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese. *Genes & Immunity.*; 10: 414–420.
- 12. Karin Bolin, Juliana Imgenberg-Kreuz, Dag Leonard, et al. (2021). Variants in BANK1 are associated with lupus nephritis of European ancestry. *Genes Immun.*; 22[3]: 194
- 13. Alarcon-Riquelme M.E., Ziegler J.T., Molineros J, et al. (2016). Genome-Wide Association Study in an Amerindian Ancestry Population Reveals Novel Systemic Lupus Erythematosus Risk Loci and the Role of European Admixture. Arthritis Rheumatol.; 68:932–943. doi: 10.1002/art.39504.
- 14. Sánchez E, Comeau ME, Freedman BI, et al. (2011). International Consortium on the Genetics of Systemic Lupus Erythematosus; Gaffney PM, Jacob CO, Niewold TB, Richardson BC, Harley JB, Alarcón-Riquelme ME, Sawalha AH. Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. *Arthritis Rheum*. Nov; 63(11):3493-501. doi: 10.1002/art.30563. PMID: 21792837; PMCID: PMC3205224
- Chung SA, Brown EE, Williams AH, Ramos, et al. (2014). Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. *J Am Soc Nephrol.*; 25:2859–70. doi: 10.1681/ASN.2013050446.
- 16. Guan M, Yu B, Wan J, Zhang X, et al.(2011). Identification of BANK1 polymorphisms by unlabelled probe high resolution melting: association with systemic lupus erythematosus susceptibility and autoantibody production in Han Chinese. *Rheumatology* (Oxford). Mar; 50(3):473-80. doi: 10.1093/rheumatology/keq353. Epub 2010 Nov 14. PMID: 21078628.

- 17. Ramirez-Bello J., Jimenez-Morales S., Montufar-Robles I., et al. (2019). BLK and BANK1 polymorphisms and interactions are associated in Mexican patients with systemic lupus erythematosus. *Inflamm. Res.*; 68:705–713. doi: 10.1007/s00011-019-01253-9.
- 18. Pamuk, O N, Gurkan H, Pamuk G E, et al. (2017). BLK pathway-associated rs13277113 GA genotype is more frequent in SLE patients and associated with low gene expression and increased flares *Clin Rheumatol.*; 36[1]:103-109. doi: 10.1007/s10067-016-3475-7.