

Immunostimulant effect of dates (Phoenix dactylifera) on humoral and cellular immunity cells and their functions

Soukaina Laaraj¹, Ibtissam Ouahidi^{1,2}, Nada Al Moudani¹, Abdellatif Boukir³, Samira Jaouhar^{1,4,5} and Lotfi Aarab¹

The Egyptian Journal of Immunology, E-ISSN (2090-2506) Volume 31 (3), July, 2024 Pages: 28–40.

www.Ejimmunology.org

https://doi.org/10.55133/eji.310303

¹Laboratory of Microbial Biotechnology & Bioactive Molecules (LM2BM), Faculty of Sciences & Techniques of Fez, Sidi Mohammed Ben Abdellah University, Morocco.

²High Institute of Nursing & Technical Health (ISPITS). Ministry of Health, Fez, Morocco.

³Laboratory of Applied Chemistry, Faculty of Sciences & Technology of Fez, Sidi Mohammed Ben Abdellah University Morocco.

⁴Higher Institute of Nursing & Health Professions of Fez-Meknes, Regional Directorate of Health Fes-Meknes, El Ghassani Hospital, Dhar El Mehraz, 30000 Fes, Morocco. ⁵Laboratory of Health Sciences & Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Casablanca Road km 3,5 PB 555 Settat; 26000; Morocco.

Corresponding author: Lotfi Aarab, Laboratory of Microbial Biotechnology & Bioactive Molecules (LM2BM), Faculty of Sciences & Techniques of Fez, Sidi Mohammed Ben Abdellah University, Morocco.

Email: aarab.lotfi0@gmail.com

Abstract

The study aimed to assess the immunomodulatory effects of Phoenix dactylifera (dates) fruit, a traditional remedy used by Moroccans to enhance immunity against pathogens. This research sought to evaluate the impacts of this fruit on immune cells and their functions. To achieve this, we conducted tests using date extracts on splenocytes, thymocytes, and macrophages, focusing on their functions: antibody production, phagocytosis, and T-lymphocyte toxicity. The results obtained demonstrated that the aqueous extract of P. dactylifera fruit exhibited significant immunostimulatory effects on humoral immunity. It achieved this by enhancing complement activity and increasing splenocyte (including B-lymphocytes) proliferation by 142.5% compared to control cells. Similarly, in the same conditions, there was notable stimulation of cellular immunity through thymocyte activity, resulting in a remarkable increase in cell proliferation (225%) and a boost in thymocyte function (245.9%), which plays a role in safeguarding against cancer. Moreover, the date extract demonstrated anti-inflammatory properties. This was evident in the increased phagocytosis activity mediated by macrophages under the ethyl acetate extract, effectively eliminating pathogens. Assessing the cosmetic potential of date extracts showed that the ethyl acetate extract possesses both anti-inflammatory and strong antioxidant effects, exhibited high photo absorption of ultraviolet-B rays. Based on these findings, we propose to study the utilization of this extract for sun protection as a sunscreen. Furthermore, the Fourier-transform infrared spectroscopy analysis indicated that the most active compounds present were flavonoids. These outcomes substantiate the traditional usage of this fruit for reinforcing immunity.

Keywords: Cell proliferation, IgG production, Immunostimulant, phagocytosis, *Phoenix dactylifera*, splenocytes, antioxidant

Date received: 16 November 2023; accepted: 28 March 2024

Introduction

Morocco has gained renown for its rich tradition of herbal medicine. Within Moroccan culture, a plethora of applications involving pharmacological natural products exist. Many of these botanical products serve to bolster the immune system's defenses against diverse microorganisms. The modulation of the immune system through various therapeutic plant products is currently undergoing extensive global investigation. Consequently, a significant proportion of contemporary medicinal drugs trace their origins back to plants utilized in traditional medicine. Multiple studies are currently underway to explore various plant species and their therapeutic potentials, with the findings garnering international attention and elevating the prominence of traditional medicine. Furthermore, according to the World Health Organization, approximately 75% of the global population primarily relies on herbal remedies for their healthcare necessities.^{2,3} This underscores the keen interest in discovering novel and safe immunomodulatory agents derived from natural sources.

Phoenix dactylifera, commonly known as "Tmar" in Morocco, boasts elevated nutritional value and a composition replete with mineral salts, vitamins, organic acids, tannins, and sugars. All these bioactive compounds confer advantageous effects. In the realm of traditional medicine, Moroccans predominantly consume dates to fortify immunity against infections. Moreover, this fruit finds application in treating various ailments, notably fever, inflammation, and hypertension. This usage is concentrated in the southern and desert regions of Morocco.

Prior studies have delved into the antioxidative and anti-inflammatory impacts of Moroccan *P. dactylifera.*^{4,13} Nevertheless, exploration into other significant biological activities of this medicinal Moroccan plant remains constrained. Thus, the present inquiry

delved into the immunomodulatory effects of dates on immunity, utilizing a cellular model of immune cells isolated and cultivated for assessing the fruit's immune-boosting activity. This cellular model was additionally employed to evaluate immune cell functions, particularly antibody production, T-lymphocyte toxicity, and the complement system. Additionally, we investigated the fruit's antioxidative properties, its absorption of ultraviolet-B rays, and its Fourier-transform infrared spectroscopy. This investigation employed P. dactylifera fruit sourced from the Daraa-Tafilalt region in the southern part of Morocco, aiming to ascertain its potential utility as a treatment against cancer and viral disorders.

Subjects and Methods

Preparation of extracts

P. dactylifera (dates) were sourced from the southern region of Morocco, specifically the Daraa-Tafilalt region. The collected dates were disinfected using 70% ethanol and then dried at 40°C until a stable weight was achieved. Subsequently, they were finely ground into a powder. The powder underwent maceration at a 10% concentration in water, ethanol (EtOH), or ethyl acetate (EtOAc). Following filtration, the water extract was lyophilized at -80°C using a freeze drier (bk-fd12p (-80), Biobase freeze dryer, Biobase Biodustry Co., Ltd (Shandong), China) for 24 hours. The ethanol and ethyl acetate extracts were evaporated using a rotary evaporator (Rotary Evaporator RE100-PRO, BIOBASE Group, Shandong, China). Finally, the extracts were preserved at -20°C until their intended use.

Cell culture

This study employed cell suspensions obtained from previously slaughtered rabbits. The rabbits, weighing between 1.5 to 2 kg, were anesthetized with petroleum ether, and then humanely slaughtered.

All chemicals were purchased from Sigma-Aldrich, USA. As delineated in our previous investigations, 14,15 the immune organs, namely the spleen and thymus, were aseptically isolated from the animals. Cell suspensions were generated by passing the organs through a fine wire mesh. Subsequently, red blood cells were lysed using 154 mM ammonium chloride after being rinsed with RPMI medium (Sigma-Aldrich- USA). Live spleen and thymic cell counts were determined microscopically using trypan blue staining, employing the 1% exclusion rate test. Spleen and thymic cells were cultured in RPMI medium supplemented with 2 mM glutamine, 10% serum, ampicillin at 100 U/mL, streptomycin at 100 mg/mL, and fluconazole at 2 mg/ml. In all these experimental series, the effect of extracts on cells were compared to a control group composed by cells alone without extracts.

Cell proliferation assay

As previously noted ^{16,18}, cell proliferation was evaluated employing the MTT assay, following the methodology established by Mosmann et al., 1983. 19 Rabbit splenocytes and thymocytes were seeded in 96-well plates (Citotest Labware manufacturing CO., LTD, 48Xinxiu Road, Haimen City 226100 Jiangsu, China) at a density of 150,000 cells per well. Subsequently, the cells were cultured/incubated for 72 hours at 37°C in a humidified environment comprising a mixture of 95% air and 5% CO2. Prior to incubation, EtOH, EtOAc and aqueous extracts of date (P. dactylifera) were dissolved in RPMI at the desired concentration and introduced to the cells. Following this, 10 µL of MTT solution (5 mg/mL in PBS) was added. Following a threehour incubation period, dimethyl sulfoxide (DMSO) was introduced to all wells to dissolve the formed formazan. Lastly, the optical density was measured at a wavelength of 570 nm using a spectrophotometer (Bio Tek L800, Bio Tek Instruments, USA).

Isolation of macrophages and evaluation of their proliferation and activity

To summarize, macrophages were isolated from spleen cells based on their adherence ability to plate wells. In this process, 100 μ L of spleen cell

suspension containing 2.10⁶ cells/mL was added to 96-well plates, which were then incubated at 37°C for 2 hours to allow macrophages to adhere. Following this, non-adherent cells were removed, and each well was subjected to two washes using sterile RPMI.

For the assessment of macrophage proliferation, the adherent macrophages were incubated in RPMI medium containing various date extracts. The proliferation was subsequently evaluated using the MTT assay, in accordance with above-described procedures.

The phagocyte test was executed in 96-well plates following the methodology outlined in our prior studies, 14,16,17,18 utilizing neutral red. In each well, adherent macrophages were cultured in 100 μL of RPMI supplemented with 0.075% neutral red. Subsequently, plant extracts were introduced, and the plates were incubated for 2 hours at 37°C in a humidified environment comprising a mixture of 95% air and 5% CO2. To conclude, after removing the supernatant and washing the cells with RPMI, the reaction was terminated using a solution containing acetic acid (1M) and ethanol (1:1 v/v), which dissolved the phagocytosed neutral red. The extent of phagocytic activity was gauged by measuring the absorbance at 540 nm, which corresponds to the maximum absorption of neutral red employed in the assay.

Allogenic mixed lymphocyte reaction (MLR)

Freshly isolated thymocytes were incubated with Chicken Red Blood Cells (CRBC) at a ratio of 10^5 CRBCs to 10^6 thymocytes in RPMI medium supplemented with fetal bovine serum (Sigma-Aldrich, USA). The mixture was then incubated, with or without date extracts, for 24 hours at 37° C in a humidified environment. To gauge the cytotoxicity of thymocytes against CRBC, the lysis of CRBCs releases hemoglobin, the dye. The level of hemoglobin released (proportional to the number of lysed CRBC) was then measured by evaluating absorbance at 540 nm.

Complement test

The complement test was executed through the assessment of mouse red blood cell (MRBC) lysis via the complement pathway, in the presence of anti-MRBC antibodies obtained

from immunized rabbits using Freund's adjuvant and mouse RBCs as antigens. MRBCs were incubated in RPMI medium supplemented with serum containing anti-MRBC-specific antibodies for a duration of 4 hours, alongside 2 mg/ml extracts, all maintained at 37°C. Following the incubation period, the samples were centrifuged, and the absorbance of the supernatants was determined at 540 nm.

Evaluation of IgG production by an enzyme immunosorbent assay (ELISA)

The ELISA was conducted following established procedures. 14,16,17,18 Isolated splenocytes were incubated with or without date extracts at 2 mg/ml in RPMI medium for a duration of 72 hours at 37°C. Following incubation, 100 µL of cell culture supernatant was placed onto a microtiter plate for total IgG evaluation. Subsequently, peroxidase-labeled rabbit antibody (100 µL per well) was added and allowed to incubate for two hours at 37°C. The immune complex was then revealed by adding the chromogen orthophenylene diamine (OPD) at a concentration of 0.5 mg/ml. The reaction was halted by the addition of 3M HCl, and absorbance was measured at 490 nm.

In the case of specific IgG, the procedure commenced by coating the wells with 100 μL of Ovalbumin (at a concentration of 0.001 mg/ml). Subsequently, 100 μL of the cell culture supernatant was added, and the assay proceeded as outlined above for total IgG.

Total phenolic content

The total phenolic content of the extract was determined through the Folin-Ciocalteu method. This technique involves the meticulous mixing of 1.5 ml of Folin-Ciocalteu reagent (10%) with 200 µl of date extracts (dissolved in methanol). The resultant mixture was gently stirred and allowed to react for 5 minutes in darkness. Subsequently, 1.5 ml of sodium carbonate (5%) was introduced. After an incubation period of 2 hours at room temperature, away from light, the values were measured at 750 nm. The phenolic content's concentration was established through a calibration curve employing gallic acid as a standard solution. The outcomes were denoted in milligrams equivalent of gallic acid per gram of extract.

Total flavonoid content

The quantification of flavonoids was performed using the aluminum trichloride (AICI3) method as described by Bahorun et al., 1996 42. To initiate the procedure, 0.5 ml of date extract (dissolved in methanol) was blended with 0.1 ml of aluminum chloride (10%), 0.1 ml of potassium acetate (1 M), and 4.3 ml of distilled water. Following thorough mixing and an incubation period of 30 minutes at room temperature, the absorbance was recorded at 415 nm. The flavonoid concentration was extrapolated from calibration a established with quercetin dehydrate (used as a standard since it is a flavonoid compound). The outcomes are presented in micrograms of quercetin equivalent per milligram of extract.

Antioxidant assays

The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay was conducted as previously described 4,15,20 with slight modifications. Briefly, EtOH, EtOAc and aqueous extracts of date *P. dactylifera* were diluted in methanol and then mixed with a DPPH solution. The absorbance of the resulting mixture was measured at 517 nm. The BHT (butylhydroxytoluene), vitamin E (tocopherol), and ascorbic acid (vitamin C) were used as antioxidants compounds. They were employed as positive controls.

For the Ferric Reducing Antioxidant Power (FRAP) assay, we followed the method outlined by Oyaizu, 1986.²¹ EtOH, EtOAc and aqueous extracts of date *P. dactylifera* were combined with 2.5 ml of a 0.2 M phosphate buffer solution (pH 6.6) and 2.5 ml of a 1% potassium ferricyanide K3Fe (CN) 6. Following this, 10% trichloroacetic acid was added to halt the reaction. A portion (2.5 ml) of the supernatant, diluted with 2.5 ml of distilled water, was then mixed with 0.5 ml of FeCl3, and the absorbance of the resulting compound was measured at 700 nm.

The ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonate)) assay was executed as described by Re et al., 1999.²² ABTS was dissolved in distilled water and potassium

persulfate was subsequently added. The reaction mixture was allowed to stand at room temperature in the dark for 12–16 hours. Following this, 2 ml of the diluted ABTS solution was mixed with 200 μ l of each of the three extracts, allowed to sit for 1 minute, and the absorbance was measured at 734 nm.

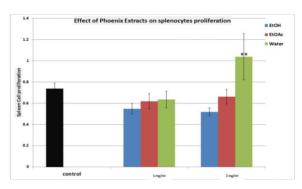
UV Absorbance

The three date extracts were prepared at a concentration of 2 mg/ml, and their UV absorbance was examined in vitro. The absorbance values within the 290 nm to 400 nm range, corresponding to the Ultra-Violet B (UVB) and Ultra-Violet A (UVA) regions, were computed. In parallel, we assessed the UV absorption of two commercial sunscreens (CARE SUN+ SPF50 and CARE SUN+ SPF30) at 10 mg/ml under identical conditions to serve as positive controls.

Infrared spectral analysis

Infrared analysis was conducted using an infrared spectrophotometer (VERTEX 70 spectrophotometer, BRUKER, USA). A small drop of purified EtOH, EtOAc and aqueous extracts of date *P. dactylifera* were meticulously positioned onto the crystal surface and secured within the path of the infrared beam. The acquired infrared data were then cross-referenced with a table of infrared frequencies.

Statistical Analysis


Each experimental condition was replicated a minimum of three times. The presented values are expressed as means \pm standard error of the mean (SEM). Statistical analysis was conducted using the analysis of variance (ANOVA) test, and statistically significant differences were recognized at p<0.05.

Results

Effect of P. dactylifera extracts on humoral immunity

Figure 1 illustrates the impact of *P. dactylifera* extracts obtained using ethanol (EtOH), ethyl acetate (EtOAc), and water on splenocyte proliferation. The presence of *P. dactylifera* extracts resulted in a minor inhibition of splenocyte proliferation under EtOH and EtOAc

extracts (28.8% and 9.5% inhibition, respectively), while stimulation was observed with the aqueous extract at 2 mg/ml, showing a 142.5% response compared to the control cells without extracts (Figure 1).

Figure 1. Effect of Phoenix extracts on splenocyte proliferation. EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract

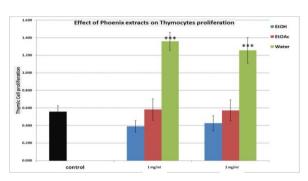
Furthermore, the production of both total and specific IgG by splenocytes under different *P. dactylifera* extracts was assessed (Table 1). The aqueous extract exhibited negligible alterations in IgG production. In contrast, the EtOH and EtOAc extracts led to inhibitions of total IgG production by 25.6% and 18.8%, respectively. These inhibitory effects were more pronounced in terms of specific IgG production (EtOH: 40.1±9.2% inhibition; EtOAc: 31.3±10.3% inhibition; N=8).

Table 1. Effect of *P. dactylifera* extracts (at 2 mg/ml) on total IgG production.

Phoenix Extracts	Total IgG Production as % of Control	N
EtOH	74.4 ± 9.4 %	6
EtOAc	81.2 ± 12.5 %	6
Water	97.5 ± 6.3 %	6

Results are represented as % of control obtained in same experiments. EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract

Lastly, the activity of the complement system was examined under the same three extracts. Notably, the aqueous extracts significantly stimulated complement activity by 130.2%. Conversely, under identical conditions, the EtOH and EtOAc extracts induced immunosuppression of complement activity (Table 2).


Table 2. Effect of *P. dactylifera* extracts (at 2 mg/ml) on Complement activity.

Phoenix Extracts	Complement Activities as % of Control	N
EtOH	79.4 ± 13.0	6
EtOAc	83.4 ± 12.9	6
Water	130.2 ± 16.0	6

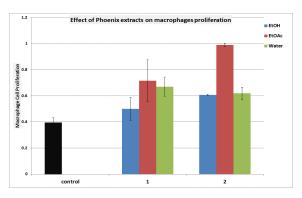
EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract.

Effect of P. dactylifera extracts on cellular immunity

The impact of *P. dactylifera* extracts on thymocyte proliferation was assessed. As depicted in Figure 2, the aqueous extract at a concentration of 1mg/ml exhibited a remarkable immunostimulatory effect on cell proliferation, yielding a substantial 225% response compared to control cells without extracts (*p*<0.001; N=5). Conversely, the EtOH extract impeded thymocyte proliferation by 28.1%, while the EtOAc extract showed no discernible effect (Figure 2).

Figure 2. Effect of Phoenix extracts on thymocyte proliferation. EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract

Through an evaluation of thymic cell cytotoxicity against foreign cells (Table 3), it was noted that the EtOH and EtOAc extracts of P. dactylifera did not induce any MLR changes. Notably, however, the aqueous extract exhibited a significant augmentation in cytotoxic activity, demonstrating a prominent 245.9% response compared to the control (p<0.005).


Table 3. Effect *P. dactylifera* extracts (at 2 mg/ml) on MLR activity (Thymocyte Cytotoxicity).

Phoenix Extracts	MLR activity (Thymocyte Cytotoxicity) as % of Control	N
EtOH	93.8 ± 13.0	7
EtOAc	98.0 ± 8.5	7
Water	245.9 ± 22.0	7

Results are represented as % of the control obtained in same experiments. EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract.

3-Effect of *P. dactylifera* on macrophage proliferation and phagocytosis

With respect to macrophage proliferation, we observed a notable immunostimulatory effect across all extracts. This effect was particularly pronounced in the case of the EtOAc extract, displaying a peak response of 240.5% compared to the control cells without extracts (Figure 3).

Figure 3. Effect of Phoenix extracts on macrophage proliferation. EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract.

Regarding phagocytosis activity (Table 4), both *P. dactylifera* EtOH and EtOAc extracts exhibited stimulating effects on phagocytosis, eliciting responses of 144% and 200%, respectively (p<0.05; N=4; Table 4). The heightened stimulation observed in macrophage proliferation and phagocytosis activities may imply an anti-inflammatory influence associated with the EtOAc extract of dates.

Table 4. Effect of *P. dactylifera* extracts on Macrophage Phagocytosis.

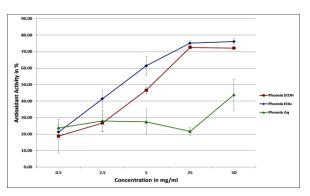
	Phagocytosis of	
Phoenix Extracts	Macrophage	N
	(Absorbance)	
Control	0.25 ± 0.01	4
EtOH	0.36 ± 0.08	4
EtOAc	0.50 ± 0.1	4
Water	0.20 ± 0.04	4

EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract.

Phenolic and Flavonoid content

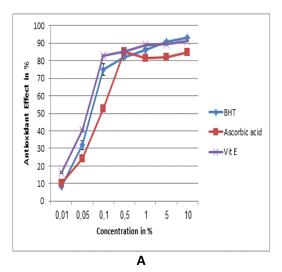
Table 5 provides a summary of the phenolic and flavonoid content measurements obtained from *P. dactylifera* extracts. Notably, the aqueous extract exhibited a significantly elevated level of phenolic and flavonoid content, quantified at 1344.3±0.023 mg/g and 108.7±0.02 mg/g of extract, respectively.

Table 5. Total phenolic, flavonoid and antioxidant activities of *P. dactylifera* extract.


	Total	Total	ABTS
Phoenix	phenolic	flavonoid	IC50 (mg
Extracts	(mg of GA/g	(mg of Q/g	TE/edw)
	Extract)	Extract)	re/euw)
EtOH	797.3± 0.01	63.7± 0.01	0.19± 0.01
EtOAc	798.8±0.01	81.2±0.01	0.19±0.001
Water	1344.3±0.02	108.7±0.02	2.66± 0.05

The values are the mean of three determinations ± standard error of the mean. EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract. GA: Gallic acid; Q: Quercetin; ABTS: IC50 (mg TE/edw): Trolox equivalent.

The antioxidative effect of P. dactylifera extracts


In order to assess the antioxidant activity of *P. dactylifera* extracts, three distinct methods were employed: DPPH, ABTS, and FRAP assays. Figure 4 illustrates the outcomes of the DPPH

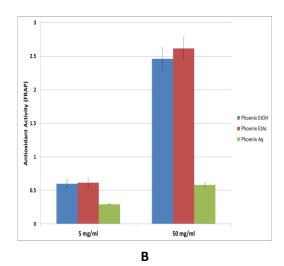

assay for all three extracts. A noteworthy antioxidant effect was observed, intensifying proportionally with concentrations ranging from 0.5 to 50 mg/ml. The EtOH and EtOAc extracts demonstrated peak antioxidant activity, exceeding 70%. The calculated half maximal inhibitory concentration (IC50) values were 2.3% for EtOAc, 0.7% for EtOH, and 4.0% for the aqueous extract (IC50 values were calculated from curve of antioxidant effect by determining the concentration needed to inhibit half of the maximum response recorded). In comparison, IC50 values were 0.55% for vitamin E, 0.06% for BHT, and 0.08% for ascorbic acid.

Figure 4. Antioxidative effects of *Phoenix* extracts By DPPH radical scavenging essay compared to BHT, Ascorbic acid and vitamin E. EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract.

These findings were corroborated by the FRAP assay, as depicted in Figure 5, reaffirming the heightened antioxidant potential of the EtOH and EtOAc extracts. Meanwhile, through the ABTS assay, we observed that the EtOH and EtOAc extracts exhibited the most potent activity, featuring an IC50 value of 0.2 g/ml.

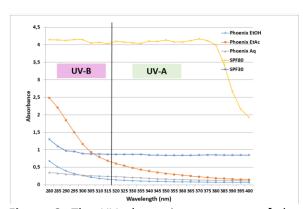


Figure 5. Antioxidative effects of Phoenix extracts by FRAP ferric reducing antioxidant power essay compared to BHT, Ascorbic acid and vit E. EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract.

UV Absorbance

Figure 6 presents the UV absorbance profiles of *P. dactylifera* extracts. The findings revealed that all three extracts displayed increased absorbance for UVB as opposed to UVA. Within the UVB range, the EtOAc extract exhibited notably higher absorption compared to sunscreen Sun Protection Factor (SPF) 30, peaking at an impressive 2.5 nm. Following this, the EtOH extract registered an absorption value of 0.7 nm. Conversely, the aqueous extract demonstrated lower UVB partial absorbance, with a peak value of 0.35 nm.

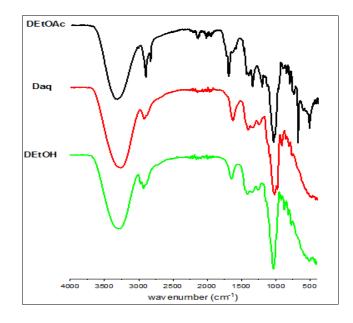


Figure 6. The UV absorption spectrum of the *Phoenix* extracts. EtOH: Ethanol extract; EtOAc: Ethyl Acetate extract; Water: Aqueous extract.

Infrared spectral analysis

To discern the underlying functional groups within the structures, FT-IR spectroscopy was employed. The infrared spectra of P. dactylifera extracts are presented in Figure 7. A broad band, centered around 3350 cm⁻¹, was ascribed to stretching vibrations of O-H or phenol groups.²⁷ A faint band between 2800-3000 cm⁻¹ was allocated to symmetrical stretching vibrations of C-H²⁸ and/or the stretching vibrations of C-H within aromatic frameworks such as flavonoids or aromatic acids.²⁹ The observed band ranging from 1650 to 1750 cm⁻¹ corresponds to the elongation vibration of carbonyl (C=O) bonds in flavonoids polyphenols, along with the C=C stretching associated with aromatics. Further distinct peaks related to the stretching of C-C and the bending vibration of C-H within aromatic rings were evident around 1450 cm⁻¹, while the C-O group of hydroxy-flavonoids was detected around 1250 cm⁻¹.

The bands positioned between 1450-1200 cm⁻¹, indicative of asymmetric CH2/CH3 scissoring, and those between 500 and 850 cm¹, representing C-H vibrations (bending, rocking, wagging), were more pronounced in the EtOAc extract in comparison to EtOH and aqueous extracts. This heightened presence, owing to their non-polar nature, potentially affirms the presence of triglycerides or phospholipids within the extracts. ^{27,29} (Table 6)

Figure 7. Fourier Transform infrared spectroscopy spectrum analysis of *P. dactylifera* extracts. DEtOH: Ethanol extract; DEtOAc: Ethyl Acetate extract; Water: Aqueous extract.

Table 6. Infrared band assignments of *Phoenix dactylifera* samples extracted with the three following solvents: EtOH, EtOAc, and water.

Wavelength number (cm ⁻¹)	D (EtOH)	D (EtOAc)	D (Water)	Band assignments	Reference
3640-3050 centered at 3320	3640- 3050 centered at 3320	3640- 3050 centered at 3320	3080- 3000 centered at 3321	vO-H of alcohol and phenol groups strongly associated with <i>inter</i> - and <i>intra</i> -molecular hydrogen-bond (<i>broad</i> and <i>intense</i>)	(36) (39)
3030 2980	 + +	+ +	 +	$vC=H_{ar}$ and/or $vC=H$ of double band $v_sCH_2 + v_{as}CH_3$ of aliphatic and/or alkyl chains	(37)
2922 2865 2150 2050	+ 	+	+ 	v₅CH₃ v₅CH₂ vC≡N	(38)
2000 to 1850 1740 1711	 	+.	+.	vC≡C harmonic (overtone) of the aromatic ring (weak)	(39)
1650	 +	+ 	+	vC=O of normal ester group (-CO₂R) vC=O of ketonic group	(37)
1632 1600 and 1590 1465	+ + +	+ + +	5. 5. + 5.	vC=O of Retonic group vC=O of diconjugate carbonyl δOH of adsorbed water (<i>broad</i>) vC _{ar} =C _{ar} (stretching mode of aromatic ring)	(40) (38)
1430 1406 1358 1329	 +	 + 	+ +	$ ho_r=C_{ar}$ $\delta_{as}CH_2$ δCH_2 (scissoring)	(37)
	+		+	δO-H phenolic (<i>broad</i>)	(36)

Table 6. Continued.

Table 0: continu	icu.				
Wavelength	D	D	D	Band assignments	Reference
number (cm ⁻¹)	(EtOH)	(EtOAc)	(Water)		
1246		+			(41)
1220	+	+	+		
1160			+		(36)
1120		+	+		
1060 to	+			$\delta_s CH_3$	
1040				δCH $₂$ (wagging)	(41)
998			+		
981	+	+	+	vC _{ar} -O guaiacyl+ vC-O of carbohydrates	(39,41)
916	+			•	(20)
				vC _{ar} -O syringyl+ vC-O-C of ester	(39)
881		+	+	(C(=O)-O-C)	
0.00				v_{as} C-O-C: bridge of β -(1-4)-glycosidic	
862	+		+		
820		+		vC-O of secondary alcohol of	
790		+		carbohydrates	
785		+	+	vC-O of glucopyranoside ring (broad	
779	+			and intense): fingerprint region of	
770		+		carbohydrates	
696		+		, 	
650		+			
528	+				
511	+	+	+		
450-900					

 $\delta_{\rm oop}$ C-H of aromatic ring γ C-H $_{\rm ar}$ (2C-H $_{\rm ar}$ adjacent) out of plane bending γ C-H $_{\rm ar}$ of 1,2,4-trisubstituted aromatic $\delta_{\rm oop}$ OH of alcohols and phenolic groups (large band)

 ${f V}$: stretching vibration, ${f V}_{as}$: asymmetric stretching vibration. n, ${f V}_s$: symmetric stretching vibration, ${f \delta}$: in plane bending vibration, ${f \gamma}$: out of plane bending mode, ${f \delta}_{oop}$: out of plane bending vibration, ${f r}$: rocking.

Discussion

This study aimed to assess the immunity-related characteristics of a significant food source both consumed by Moroccans and globally, namely *P. dactylifera*, or dates. We scrutinized humoral and cellular immunity cells, along with their activities within a cell culture model. Three extracts were derived from dates utilizing Ethanol, Ethyl acetate, and water.

The results obtained unveil that the aqueous extract exhibited pronounced stimulation in

splenocyte proliferation, composing an average of 45% B-lymphocytes, 35% T-lymphocytes, and 15% phagocytic cells the composition of spleen cells B, T lymphocytes and macrophages in percentage according to Aggarwal et al., 2013, while not inducing stimulation of IgG secreted by B-lymphocytes. Similarly, under the same conditions, we observed elevated stimulation in thymocyte proliferation and their mixed cytotoxicity function (MLR). These findings imply that the aqueous extract holds potential as an immunostimulatory, particularly for

cellular immunity, which is pivotal in safeguarding against viral disorders and cancer. This conclusion finds support in two previous studies demonstrated that dates fostered natural killer cell proliferation, thus halting the progression of breast cancer.^{24,25}

In contrast, in the present study, both Ethanol and Ethyl acetate extracts exhibited an immunosuppressive effect on both humoral (evidenced through inhibition of splenocyte proliferation and IgG production) and cellular immunity (as seen in the inhibition of thymocyte proliferation). This suggests that compounds extracted through these solvents could be harnessed for their potential to dampen immune reactions, serving as antiinflammatory agents. This deduction gains strength from observations on phagocytic cells and their function, as both extracts stimulated macrophage proliferation and phagocytosis, corroborating their anti-inflammatory actions. Notably, the effect was more pronounced with the Ethyl acetate extract, suggesting its potential as a source of anti-inflammatory compounds, a notion supported by a previous study, which indicated the stimulation of phagocytic activity by P. dactylifera.²⁶

Moreover, methanolic, acidic, and basic ethanolic extracts of date fruit (at 1 µg/mL) reduced inflammation in RAW macrophages cell-line induced by Escherichia lipopolysaccharide (LPS). The anti-inflammatory traits of dates were attributed to the presence of flavonoids and phenolic substances, as highlighted by Das et al., 2015.²⁷ This aligns with another research which suggested that both P. dactylifera extracts, laden with polyphenols 798.79±0.012 mg of GA/g (797.29±0.006; Extract) and flavonoids (63.66±0.006; 81.16±0.006 mg of Q/g Extract), possess antiinflammatory actions.²⁸

To summarize, the aqueous extract exhibited cellular immunity immuno-stimulation, while Ethanol and Ethyl acetate extracts demonstrated immunosuppression. This inhibition indicates that these extracts blocked proliferation cell and consequently immunity reactions induced by the three immunity cell populations. This leads to suppression of inflammatory reactions, which

are a part of immunity reactions. This indicates an immunosuppressive activity and therefore anti-inflammatory properties.

Lastly, a novel exploration into photo absorption along with antioxidative attributes was undertaken. The results revealed that the extract demonstrated aqueous antioxidant impact without significant UV ray absorption. Conversely, other extracts showcased heightened antioxidative potency, as corroborated by three distinct methods (DPPH, FRAP, and ABTS assays), thereby validating earlier findings of other studies. 4,7,29,30,31,32 Notably, the Ethyl acetate extract from palm demonstrated dates substantial absorption, particularly within the UV-B range.

In light of these results, the Ethyl acetate extract presents a potential application as a sunscreen due to its possession of three key attributes: (i) substantial UV-B ray absorption (>50% of UV-B rays), (ii) antioxidative characteristics, and (iii) anti-inflammatory effects. These combined properties suggest possible use of this extract in sunscreens as a skin protector by complementing these in vitro studies with in vivo studies.

By infrared spectral analysis, we observed the presence of flavonoids or aromatic acids, which were reported by another study.³³ Quercetin, isoquercetin, luteolin, rutin, apigenin are the probable flavonoids present in *P. dactylifera*.^{33,34} Moreover, polyphenols was presented with higher content.³³ We also observed the presence of triglycerides or phospholipids that is present with low level in date fruit ^{34,35}

Through the assessment of various extracts derived from palm dates fruit, several conclusions can be drawn: (i) The aqueous extract of *P. dactylifera* fruit exhibited a more pronounced immunostimulatory impact on cellular immunity than on humoral immunity. (ii) Ethanol and Ethyl acetate extracts displayed immunosuppressive activities, indicating their potential for anti-inflammatory applications. (iii) Notably, the Ethyl acetate extract demonstrated a photoprotective action against UV-B rays, accompanied by a potent antioxidative effect, thereby suggesting its potential use as a skin protector, however, this needs further studies.

Author Contributions

LA and SL conceived the original idea and were in charge of overall direction and planning. SL, NA, and SJ carried out the experiments. IO contributed to statistical analysis. BA contributed to the chemical characterization. SL, LA, and IO wrote the manuscript with support from IO, NA, and AB.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) denies receipt of any financial support for the research, authorship, and/or publication of this article.

Ethical approval

The study protocol was reviewed and approved by the Local Ethical Committee of Sidi Mohamed Ben Abdellah University under reference number 13 /2021/CEFST. All studies were carried out according to guidelines of animal care as prescribed by national ethical standards.

References

- 1. Bellakhdar J, Claisse R, Fleurentin J, et al. (1991). Repertory of standard herbal drugs in the Moroccan pharmacopoea. *J Ethnopharmacol*.;35(2):123–43.
- 2. Bhat P R. (2018). A Review on Immunomodulatory Effects of Plant Extracts. *Virol Immunol J.*;2(6).
- 3. Alamgir M, Uddin SJ. (2010). Recent advances on ethnomedicinal plants as immunomodulatory agents. *Ethnomedicine A Source Complement Ther*. 661(2):227–44.
- 4. Taouda H, Chabir R, Errachidi F, et al. (2014). Comparison of Antioxidant Activities and Phenolic Content of Moroccan Date Fruits. *Int J Innov Res Sci Eng Technol.* 03(09):16120–6.
- 5. Fayadh J, Al-Showiman S. Chemical composition of date palm (Phoenix dactylifera L.). Vol. 12, *J. Chem. Soc. Pak.* 1990. p. 84–103.
- 6. Baliga MS, Baliga BRV, Kandathil SM, et al. (2011). A review of the chemistry and pharmacology of date fruits (Phoenix dactylifera L.). *Food Res Int* [Internet]. 44(7):1812–22. Available from: http://dx.doi.org/10. 1016/j.foodres.2010.07.004
- 7. Vayalil, PK. (2002). Antioxidant and Antimutagenic Properties of Aqueous Extract of Date Fruit (Phoenix

- dactylifera L. Arecaceae). *J Agric Food Chem*. (50):610–7.
- 8. Bouhlali T, El J, Ennassir J, Benlyas M, et al. (2018). Anti-inflammatory properties and phenolic profile of six Moroccan date fruit (Phoenix dactylifera L.) varieties. J King Saud Univ Sci. 30:519–26.
- 9. Ziyyat A, Legssyer A, Mekhfi H, Dassouli A, Serhrouchni M, Benjelloun W. Phytotherapy of hypertension and diabetes in oriental Morocco. J Ethnopharmacol. 1997;58(1):45–54.
- 10. Tahraoui A, El-hilaly J, Israili ZH, et al. (2007). Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). *J Ethnopharmaco*. 110:105–17.
- 11. Kabbaj FZ, Meddah B, Cherrah Y, et al. (2012). Ethnopharmacological profile of traditional plants used in Morocco by cancer patients as herbal therapeutics. *Phytopharmacology*. 2(2):243–56.
- 12. Taleb H, Maddocks SE, Morris RK, et al. (2016). Chemical characterosation and the anti-inflammatory, anti-angiogenic and anti bacterial properties of date fruit (Phoenix dactylifera L.). *J Ethnopharmacol* [Internet]. 194(October):457–68. Available from: http://dx.doi.org/10.1016/j.jep.2016. 10.032
- 13. Bouhlali T, Alem C, Ennassir J, et al. (2015). Phytochemical compositions and antioxidant capacity of three date (Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. *J SAUDI Soc Agric Sci* [Internet]. Available from: http://dx.doi.org/10.1016/j.jssas.2015.11.002
- 14. Laaraj S, Ouahidi I, Aarab L. (2023). Immunostimulant effect of Brassica rapa and Raphanus sativus seeds on thymic cells and their cytotoxicity. *Egypt J Immuno.*;30(1):87–95.
- 15. Laaraj S, Ouahidi I AL. (2022). Photoabsorbent, Antioxidative, and Anti-inflammatory Properties of Three Traditional Cosmetic Seed Oils. *Trop J Nat Prod Res.* 6(11):1790–3.
- 16. El Hamsas El Youbi A, Bousta D, Ouahidi I, et al. (2010). Criblage pharmacologique primaire d'une plante endémique originaire du Sud Marocain (Tetraena gaetula [Emb. & Maire] Beier & Thulin). Comptes Rendus Biol [Internet]. 333(10):736–43. Available from: http://dx.doi.org/10.1016/j.crvi. 2010.08.001
- 17. Amal EL Hamsas (2011). In vitro immunomodulation effects of the aqueous and protein extracts of Berberis hispanica Boiss and Reut. (Family Berberidaceae). *J Med Plants Res.* 6(25):4239–46.
- 18. Daoudi A, Bousta D, Aarab L, et al. (2013). Evaluation and characterization of the

immunomodulatory activity of the protein extract from Citrullus colocynthis L. *Food Agric Immunol.* 24(1):47–57.

- 19. Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. *J Immunol Methods*. 65(1–2):55–63.
- 20. Boudkhili M, Greche H, Misbahi H, et al. (20105). Isolation and antioxidant activity of flavonoids from Coriaria myrtifolia methanolic extract. *Chem Nat Compd.* 51(1):141–2.
- 21. Oyaizu M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. *Japanese J Nutr Diet.*; 44(6):307–15.
- 22. Re R, Nicoletta P, Anna P, et al. (2005). et al. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26 (9-10)):1231–7.
- 23. Aggarwal N, Fischer J, Swerdlow SH, et al. (2013). Splenic Lymphoid Subsets With Less Well-Recognized Phenotypes Mimic Aberrant Antigen Expression. 787–94.
- 24. Karasawa K, Uzuhashi Y, Hirota M, et al. (2011). A Matured Fruit Extract of Date Palm Tree (Phoenix dactylifera L.) Stimulates the Cellular Immune System in Mice. 11287–93.
- 25. Mohammed R, Elhemeidy M, Lyrawati D, et al. (2018). Date Fruit Extract (Phoenix dactylifera , Ajwa) Modulates NK Cells and TNF- Alpha in DMBA-Induced *Mammary Cancer Sprague-Dawley Rats*. 8(3):227–35.
- 26. Eddine KH, Zerizer ZK. (2014). Immunostimulatory activity of Phoenix dactylifera. Innovare. *Int J Pharm Pharm Sci.*;6(3):73–6.
- 27. Rintu Das, Shinjini Mitra, Kaustab Mukherjee, et al. (2015). Anti-Oxiflammatory Profile of Date Extracts, *Biomed Res Ther*. 2(6):297–317.
- 28. Belbahri et al. (2016). Phoenix dactylifera L. sap enhances wound healing in Wistar rats: phytochemical and histological assessment. *Int J Biol Macromol* [Internet]. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2016. 04.015
- 29. Benmeddour Z, Mehinagic E, Meurlay D Le, et al. (2013). Phenolic composition, and antioxidant capacities of ten Algerian date (Phoenix dactylifera L.) cultivars: A comparative study. *J Funct Foods* [Internet]. 5(1):346–54. Available from: http://dx.doi.org/10.1016/j.iff.2012.11.005
- 30. Mansouri A, Embarek G, Kokkalou E, et al. (2005). Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). *Food Chem.* 89(3):411–20.

- 31. Biglari F, AlKarkhi AFM, Easa AM. (2008). Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. *Food Chem.*;107(4):1636–41.
- 32. Al-Farsi MA, Lee CY. (2008). Nutritional and functional properties of dates: *A review. Crit Rev Food Sci Nutr.* 48(10):877–87.
- 33. Echegaray N, Gullón B, Pateiro M, et al. (2023). Date Fruit and Its By-products as Promising Source of Bioactive Components: *A Review. Food Rev Int* [Internet]. 39(3):1411–32. Available from: https://doi.org/10.1080/87559129.2021.1934003
- 34. Echegaray N, Pateiro M, Gullón B, et al. (2020). Phoenix dactylifera products in human health A review. *Trends Food Sci Technol.* 105:238–50.
- 35. El Far AH, Shaheen HM, Abdel-Daim MM, et al. (2016). Date Palm (Phoenix dactylifera): Protection and Remedy Food. *J Nutraceuticals Food Sci.* 1(2):1–10.
- 36. Boukir A, Mehyaoui I, Fellak S, et al. (2019). Doumenq P. The effect of the natural degradation process on the cellulose structure of Moroccan hardwood fiber: a survey on spectroscopy and structural properties. 8(3):179–90.
- 37. Boukir A, Guiliano M, Asia L, et al. (1998). A fraction-to-fraction study of photo-oxidation of BAL 150 crude oil asphaltenes. 358–64.
- 38. Hajji L, Boukir A, Assouik J, et al. (2015). Multi-Analytical Approach for the Evaluation of the Efficiency of the Conservation Restoration Treatment of Moroccan Historical Manuscripts Dating to the 16th, 17th, and 18th Centuries. 69(8):920–38.
- 39. Boukir A, Fellak S, Doumenq P. Heliyon (2019). Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD). *Heliyon* [Internet]. 5(September): e02477. Available from: https://doi.org/10.1016/j.heliyon.2019.e02477
- 40. Boukir A, Aries E, Guiliano M, et al. (2001). Subfractionation, characterization and photooxidation of crude oil resins. 43.
- 41. Bouramdane Y, Fellak S, Mansouri F El. (2022). Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD).
- 42. Bahorun, Th, et al. (1996). "Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations." *Arzneimittel-forschung*, 46. 11 1086-1089.